Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  B-Spline Snakes
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

B-Spline Snakes: A Flexible Tool for Parametric Contour Detection

P. Brigger, J. Hoeg, M. Unser

IEEE Transactions on Image Processing, vol. 9, no. 9, pp. 1484-1496, September 2000.


We present a novel formulation for B-spline snakes that can be used as a tool for fast and intuitive contour outlining. We start with a theoretical argument in favor of splines in the traditional formulation by showing that the optimal, curvature-constrained snake is a cubic spline, irrespective of the form of the external energy field. Unfortunately, such regularized snakes suffer from slow convergence speed because of a large number of control points, as well as from difficulties in determining the weight factors associated to the internal energies of the curve. We therefore propose an alternative formulation in which the intrinsic scale of the spline model is adjusted a priori; this leads to a reduction of the number of parameters to be optimized and eliminates the need for internal energies (i.e., the regularization term). In other words, we are now controlling the elasticity of the spline implicitly and rather intuitively by varying the spacing between the spline knots. The theory is embedded into a multi-resolution formulation demonstrating improved stability in noisy image environments. Validation results are presented, comparing the traditional snake using internal energies and the proposed approach without internal energies, showing the similar performance of the latter. Several biomedical examples of applications are included to illustrate the versatility of the method.

@ARTICLE(http://bigwww.epfl.ch/publications/brigger9901.html,
AUTHOR="Brigger, P. and Hoeg, J. and Unser, M.",
TITLE="\mbox{B-{S}pline} Snakes: {A} Flexible Tool for Parametric
	Contour Detection",
JOURNAL="{IEEE} Transactions on Image Processing",
YEAR="2000",
volume="9",
number="9",
pages="1484--1496",
month="September",
note="")

© 2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved