Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Elliptical Filtering
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Fast Adaptive Elliptical Filtering Using Box Splines

K.N. Chaudhury, A. Muñoz Barrutia, M. Unser

Proceedings of the 2008 Fifteenth IEEE International Conference on Image Processing (ICIP'08), San Diego CA, USA, October 12-15, 2008, pp. 785-788.


We demonstrate that it is possible to filter an image with an elliptic window of varying size, elongation and orientation with a fixed computational cost per pixel. Our method involves the application of a suitable global pre-integrator followed by a pointwise-adaptive localization mesh. We present the basic theory for the 1D case using a B-spline formalism and then appropriately extend it to 2D using radially-uniform box splines. The size and ellipticity of these radially-uniform box splines is adaptively controlled. Moreover, they converge to Gaussians as the order increases. Finally, we present a fast and practical directional filtering algorithm that has the capability of adapting to the local image features.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/chaudhury0802.html,
AUTHOR="Chaudhury, K.N. and Mu{\~{n}}oz Barrutia, A. and Unser, M.",
TITLE="Fast Adaptive Elliptical Filtering Using Box Splines",
BOOKTITLE="Proceedings of the 2008 Fifteenth {IEEE} International
	Conference on Image Processing ({ICIP'08})",
YEAR="2008",
editor="",
volume="",
series="",
pages="785--788",
address="San Diego CA, USA",
month="October 12-15,",
organization="",
publisher="",
note="")

© 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved