Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Hermite Splines
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Cardinal Hermite Exponential Splines: Theoretical Insights and Applications to Active Contours

C. Conti, L. Romani, V. Uhlmann, M. Unser

Proceedings of the Eighth International Conference Curves and Surfaces (ICCS'14), Paris, French Republic, June 12-18, 2014, pp. 74.


Cardinal Hermite exponential spline functions are a generalization of the classical cardinal Hermite polynomial splines. In this work we consider the 4-dimensional space ε4 = {1, x, eα x, e−α x} with α ∈ ℝ+ ∪ i ℝ+, and therefore a generalization of the well-known cubic cardinal Hermite polynomial splines. For this class of Hermite spline functions, here denoted by ε4-Hermite splines, we establish the connection to standard exponential splines, we show stability and approximation power, and we emphasize their capability of reproducing elliptical and circular shapes. Finally, we investigate their multiresolution properties and we propose a non-stationary Hermite interpolatory subdivision scheme for refinement of vector sequences via the repeated application of level-dependent matrix subdivision operators.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/conti1401.html,
AUTHOR="Conti, C. and Romani, L. and Uhlmann, V. and Unser, M.",
TITLE="Cardinal {H}ermite Exponential Splines: {T}heoretical Insights
	and Applications to Active Contours",
BOOKTITLE="Proceedings of the Eighth International Conference Curves and
	Surfaces ({ICCS'14})",
YEAR="2014",
editor="",
volume="",
series="",
pages="74",
address="Paris, French Republic",
month="June 12-18,",
organization="",
publisher="",
note="")
© 2014 SMAI-SIGMA. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from SMAI-SIGMA. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved