Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Variational Methods
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Variational Methods for Continuous-Domain Inverse Problems: The Quest for the Sparsest Solution

T. Debarre

École polytechnique fédérale de Lausanne, EPFL Thesis no. 9287 (2022), 373 p., September 16, 2022.


The goal of this thesis is to study continuous-domain inverse problems for the reconstruction of sparse signals and to develop efficient algorithms to solve such problems computationally. The task is to recover a signal of interest as a continuous function from a finite number of measurements. This problem being severely ill-posed, we choose to favor sparse reconstructions. We achieve this by formulating an optimization problem with a regularization term involving the total-variation (TV) norm for measures. However, such problems often lead to nonunique solutions, some of which, contrary to expectations, may not be sparse. This requires particular care to assert that we reach a desired sparse solution.

Our contributions are divided into three parts. In the first part, we propose exact discretization methods for large classes of TV-based problems with generic measurement operators for one-dimensional signals. Our methods are based on representer theorems that state that our problems have spline solutions. Our approach thus consists in performing an exact discretization of the problems in spline bases, and we propose algorithms which ensure that we reach a desired sparse solution. We then extend this approach to signals that are expressed as a sum of components with different characteristics. We either consider signals whose components are sparse in different bases or signals whose first component is sparse, and the other is smooth.

In the second part, we consider more specific TV-based problems and focus on the identification of cases of uniqueness. Moreover, in cases of nonuniqueness, we provide a precise description of the solution set, and more specifically of the sparsest solutions. We then leverage this theoretical study to design efficient algorithms that reach such a solution. In this line, we consider the problem of interpolating one-dimensional data points with second-order TV regularization. We also study this same problem with an added Lipschitz constraint to favor stable solutions. Finally, we consider the problem of the recovery of periodic splines with low-frequency Fourier measurements, which we prove to always have a unique solution.

In the third and final part, we apply our sparsity-based frameworks to various real-world problems. Our first application is a method for the fitting of sparse curves to contour data. Finally, we propose an image-reconstruction method for scanning transmission X-ray microscopy.

@PHDTHESIS(http://bigwww.epfl.ch/publications/debarre2202.html,
AUTHOR="Debarre, T.",
TITLE="Variational Methods for Continuous-Domain Inverse Problems: {T}he
	Quest for the Sparsest Solution",
SCHOOL="{\'{E}}cole polytechnique f{\'{e}}d{\'{e}}rale de {L}ausanne
	({EPFL})",
YEAR="2022",
type="{EPFL} Thesis no.\ 9287 (2022), 373 p.",
address="",
month="September 16,",
note="")
© 2022 Debarre. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from Debarre. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved