Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Trajectory Analysis
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Trajectory Analysis for Sport and Video Surveillance

Y.L. de Meneses, P. Roduit, F. Luisier, J. Jacot

Electronic Letters on Computer Vision and Image Analysis, vol. 5, no. 3, pp. 148-156, August 2005.


In video surveillance and sports analysis applications, object trajectories offer the possibility of extracting rich information on the underlying behavior of the moving targets. To this end we introduce an extension of Point Distribution Models (PDM) to analyze the object motion in their spatial, temporal and spatiotemporal dimensions. These trajectory models represent object paths as an average trajectory and a set of deformation modes, in the spatial, temporal and spatiotemporal domains. Thus any given motion can be expressed in terms of its modes, which in turn can be ascribed to a particular behavior.

The proposed analysis tool has been tested on motion data extracted from a vision system that was tracking radio-guided cars running inside a circuit. This affords an easier interpretation of results, because the shortest lap provides a reference behavior. Besides showing an actual analysis we discuss how to normalize trajectories to have a meaningful analysis.

@ARTICLE(http://bigwww.epfl.ch/publications/demeneses0501.html,
AUTHOR="de Meneses, Y.L. and Roduit, P. and Luisier, F. and Jacot, J.",
TITLE="Trajectory Analysis for Sport and Video Surveillance",
JOURNAL="Electronic Letters on Computer Vision and Image Analysis",
YEAR="2005",
volume="5",
number="3",
pages="148--156",
month="August",
note="")
© 2005 CVC. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from CVC. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved