Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Phase Retrieval
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Phase Retrieval: From Computational Imaging to Machine Learning

J. Dong, L. Valzania, A. Maillard, T.-a. Pham, S. Gigan, M. Unser

IEEE Signal Processing Magazine, vol. 40, no. 1, pp. 45-57, January 2023.


Phase retrieval consists in the recovery of a complex-valued signal from intensity-only measurements. As it pervades a broad variety of applications, many researchers have striven to develop phase-retrieval algorithms. Classical approaches involve techniques as varied as generic gradient descent routines or specialized spectral methods, to name a few. However, the phase-recovery problem remains a challenge to this day. Recently, however, advances in machine learning have revitalized the study of phase retrieval in two ways: 1) significant theoretical advances have emerged from the analogy between phase retrieval and single-layer neural networks, and 2) practical breakthroughs have been obtained thanks to deep learning regularization. In this tutorial, we review phase retrieval under a unifying framework that encompasses classical and machine learning methods. We focus on three key elements: applications, an overview of recent reconstruction algorithms, and the latest theoretical results.

@ARTICLE(http://bigwww.epfl.ch/publications/dong2301.html,
AUTHOR="Dong, J. and Valzania, L. and Maillard, A. and Pham, T.-a. and
	Gigan, S. and Unser, M.",
TITLE="Phase Retrieval: {F}rom Computational Imaging to Machine
	Learning",
JOURNAL="{IEEE} Signal Processing Magazine",
YEAR="2023",
volume="40",
number="1",
pages="45--57",
month="January",
note="")

© 2023 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved