Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  CT Discretization
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

A Box Spline Calculus for the Discretization of Computed Tomography Reconstruction Problems

A. Entezari, M. Nilchian, M. Unser

IEEE Transactions on Medical Imaging, vol. 31, no. 8, pp. 1532-1541, August 2012.


B-splines are attractive basis functions for the continuous-domain representation of biomedical images and volumes. In this paper, we prove that the extended family of box splines are closed under the Radon transform and derive explicit formulae for their transforms. Our results are general; they cover all known brands of compactly-supported box splines (tensor-product B-splines, separable or not) in any number of dimensions. The proposed box spline approach extends to non-Cartesian lattices used for discretizing the image space. In particular, we prove that the 2-D Radon transform of an N-direction box spline is generally a (nonuniform) polynomial spline of degree N − 1. The proposed framework allows for a proper discretization of a variety of tomographic reconstruction problems in a box spline basis. It is of relevance for imaging modalities such as X-ray computed tomography and cryo-electron microscopy. We provide experimental results that demonstrate the practical advantages of the box spline formulation for improving the quality and efficiency of tomographic reconstruction algorithms.

@ARTICLE(http://bigwww.epfl.ch/publications/entezari1201.html,
AUTHOR="Entezari, A. and Nilchian, M. and Unser, M.",
TITLE="A Box Spline Calculus for the Discretization of Computed
	Tomography Reconstruction Problems",
JOURNAL="{IEEE} Transactions on Medical Imaging",
YEAR="2012",
volume="31",
number="8",
pages="1532--1541",
month="August",
note="")

© 2012 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved