Biomedical Imaging GroupSTI
English only   BIG > Publications > Ageing Elastin

 Home Page
 News & Events
 Tutorials and Reviews
 Download Algorithms

 All BibTeX References

Effect of Aging on Elastin Functionality in Human Cerebral Arteries

E. Fonck, G.G. Feigl, J. Fasel, D. Sage, M. Unser, D.A. Rüfenacht, N. Stergiopulos

Stroke, vol. 40, no. 7, pp. 2552-2556, July 2009.

Background and Purpose—Aging affects elastin, a key component of the arterial wall integrity and functionality. Elastin degradation in cerebral vessels is associated with cerebrovascular disease. The goal of this study is to assess the biomechanical properties of human cerebral arteries, their composition, and their geometry, with particular focus on the functional alteration of elastin attributable to aging.

Methods—Twelve posterior cranial arteries obtained from human cadavers of 2 different age groups were compared morphologically and tested biomechanically before and after enzymatic degradation of elastin. Light, confocal, and scanning electron microscopy were used to analyze and determine structural differences, potentially attributed to aging.

Results—Aging affects structural morphology and the mechanical properties of intracranial arteries. In contrast to main systemic arteries, intima and media thicken while outer diameter remains relatively constant with age, leading to concentric hypertrophy. The structural morphology of elastin changed from a fiber network oriented primarily in the circumferential direction to a more heterogeneously oriented fiber mesh, especially at the intima. Biomechanically, cerebral arteries stiffen with age and lose compliance in the elastin dominated regime. Enzymatic degradation of elastin led to loss in compliance and stiffening in the young group but did not affect the structural and material properties in the older group, suggesting that elastin, though present in equal quantities in the old group, becomes dysfunctional with aging.

Conclusions—Elastin loses its functionality in cerebral arteries with aging, leading to stiffer less compliant arteries. The area fraction of elastin remained, however, fairly constant. The loss of functionality may thus be attributed to fragmentation and structural reorganization of elastin occurring with age.

AUTHOR="Fonck, E. and Feigl, G.G. and Fasel, J. and Sage, D. and Unser,
        M. and R{\"{u}}fenacht, D.A. and Stergiopulos, N.",
TITLE="Effect of Aging on Elastin Functionality in Human Cerebral

© 2009 ASA. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from ASA.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.