Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Multi-Spline Bases
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Shortest-Support Multi-Spline Bases for Generalized Sampling

A. Goujon, S. Aziznejad, A. Naderi, M. Unser

Journal of Computational and Applied Mathematics, vol. 395, paper no. 113610, pp. 1-18, October 15, 2021.


Generalized sampling consists in the recovery of a function 𝑓, from the samples of the responses of a collection of linear shift-invariant systems to the input 𝑓. The reconstructed function is typically a member of a finitely generated integer-shift-invariant space that can reproduce polynomials up to a given degree M. While this property allows for an approximation power of order (M + 1), it comes with a tradeoff on the length of the support of the basis functions. Specifically, we prove that the sum of the length of the support of the generators is at least (M + 1). Following this result, we introduce the notion of shortest basis of degree M, which is motivated by our desire to minimize computational costs. We then demonstrate that any basis of shortest support generates a Riesz basis. Finally, we introduce a recursive algorithm to construct the shortest-support basis for any multi-spline space. It provides a generalization of both polynomial and Hermite B-splines. This framework paves the way for novel applications such as fast derivative sampling with arbitrarily high approximation power.

@ARTICLE(http://bigwww.epfl.ch/publications/goujon2101.html,
AUTHOR="Goujon, A. and Aziznejad, S. and Naderi, A. and Unser, M.",
TITLE="Shortest-Support Multi-Spline Bases for Generalized Sampling",
JOURNAL="Journal of Computational and Applied Mathematics",
YEAR="2021",
volume="395",
number="",
pages="1--18",
month="October 15,",
note="paper no.\ 113610")

© 2021 The Authors. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from The Authors. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved