Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Surface Energy
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

General Surface Energy for Spinal Cord and Aorta Segmentation

H. Gupta, D. Schmitter, V. Uhlmann, M. Unser

Proceedings of the Fourteenth IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI'17), Melbourne, Commonwealth of Australia, April 18-21, 2017, pp. 319-322.


We present a new surface energy potential for the segmentation of cylindrical objects in 3D medical imaging using parametric spline active contours (a.k.a. spline-snakes). Our energy formulation is based on an optimal steerable surface detector. Thus, we combine the concept of steerability with spline-snakes that have open topology for semi-automatic segmentation. We show that the proposed energy yields segmentation results that are more robust to noise compared to classical gradient-based surface energies. We finally validate our model by segmenting the aorta on a cohort of 14 real 3D MRI images, and also provide an example of spinal cord segmentation using the same tool.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/gupta1701.html,
AUTHOR="Gupta, H. and Schmitter, D. and Uhlmann, V. and Unser, M.",
TITLE="General Surface Energy for Spinal Cord and Aorta Segmentation",
BOOKTITLE="Proceedings of the Fourteenth {IEEE} International Symposium
	on Biomedical Imaging: {F}rom Nano to Macro ({ISBI'17})",
YEAR="2017",
editor="",
volume="",
series="",
pages="319--322",
address="Melbourne, Commonwealth of Australia",
month="April 18-21,",
organization="",
publisher="",
note="")

© 2017 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved