Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Filtered Back-Projection
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Filter Design for Filtered Back-Projection Guided by the Interpolation Model

S. Horbelt, M. Liebling, M. Unser

Best poster award, Proceedings of the SPIE International Symposium on Medical Imaging: Image Processing (MI'02), San Diego CA, USA, February 24-28, 2002, vol. 4684, part II, pp. 806-813.


We consider using spline interpolation to improve the standard filtered back-projection (FBP) tomographic reconstruction algorithm. In particular, we propose to link the design of the filtering operator with the interpolation model that is applied to the sinogram. The key idea is to combine the ramp filtering and the spline fitting process into a single filtering operation. We consider three different approaches. In the first, we simply adapt the standard FBP for spline interpolation. In the second approach, we replace the interpolation by an oblique projection onto the same spline space; this increases the peak signal-noise ratio by up to 2.5 dB. In the third approach, we perform an explicit discretization by observing that the ramp filter is equivalent to a fractional derivative operator that can be evaluated analytically for splines. This allows for an exact implementation of the ramp filter and improves the image quality by an additional 0.2 dB. This comparison is unique as the first method has been published only for degree n = 0, whereas the two other methods are novel. We stress that the modification of the filter improve the reconstruction quality especially at low (faster) interpolation degrees (n = 1); the difference between the methods becomes marginal for cubic or higher degrees (n ≥ 3).

MI'02 Best Poster Award

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/horbelt0202.html,
AUTHOR="Horbelt, S. and Liebling, M. and Unser, M.",
TITLE="Filter Design for Filtered Back-Projection Guided by the
	Interpolation Model",
BOOKTITLE="Progress in Biomedical Optics and Imaging, vol. 3, no.
	22",
YEAR="2002",
editor="Sonka, M. and Fitzpatrick, J.M.",
volume="4684, Part {II}",
series="Proceedings of the {SPIE} International Symposium on Medical
	Imaging: {I}mage Processing ({MI'02})",
pages="806--813",
address="San Diego CA, USA",
month="February 24-28,",
organization="",
publisher="",
note="Best poster award")

© 2002 SPIE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from SPIE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved