Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Myocardial Perfusion
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Effect of the Bolus Size on the Quantification of Myocardial Perfusion Using MRI

M. Ivancevic, J.-L. Daire, M. Kocher, A. Righetti, D. Didier, J.-P. Vallée

Proceedings of the SCMR Eleventh Annual Scientific Sessions (SCMR'08), Los Angeles CA, USA, February 1-3, 2008, pp. 421-422.


A limitation of MRI for cardiac perfusion on routine clinical MR scanners is the trade-off between the temporal resolution and spatial coverage. Assuming that a higher contrast media dose and a slower injection rate allow lower sampling rate without a significant loss of precision in an one compartmental model, we performed a simulation study to compare two contrast injection strategies (wide and narrow bolus). The validity of the protocol was then demonstrated in patients with a history of myocardial infarction, using 201-Tl SPECT imaging as reference.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/ivancevic0801.html,
AUTHOR="Ivancevic, M. and Daire, J.-L. and Kocher, M. and Righetti, A.
	and Didier, D. and Vall{\'{e}}e, J.-P.",
TITLE="Effect of the Bolus Size on the Quantification of Myocardial
	Perfusion Using {MRI}",
BOOKTITLE="{SCMR} Eleventh Annual Scientific Sessions ({SCMR'08})",
YEAR="2008",
editor="",
volume="",
series="",
pages="421--422",
address="Los Angeles CA, USA",
month="February 1-3,",
organization="",
publisher="",
note="")
© 2008 ESC. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from ESC. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved