Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  EPFL Thesis 2857
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Parametric Shape Processing in Biomedical Imaging

M. Jacob

École polytechnique fédérale de Lausanne, EPFL Thesis no. 2857 (2003), 192 p., September 30, 2003.


In this thesis, we present a coherent and consistent approach for the estimation of shape and shape attributes from noisy images. As compared to the traditional sequential approach, our scheme is centered on a shape model which drives the feature extraction, shape optimization, and the attribute evaluation modules.

In the first section, we deal with the detection of image features that guide the shape-extraction process. We propose a general approach for the design of 2-D feature detectors from a class of steerable functions, based on the optimization of a Canny-like criterion. As compared to previous computational designs, our approach is truly 2-D and yields more orientation selective detectors.

We then address the estimation of the global shape from an image. Specifically, we propose to use cubic-spline-based parametric active contour models to solve two shape-extraction problems: (i) the segmentation of closed objects and (ii) the 3-D reconstruction of DNA filaments from their stereo cryo-electron micrographs. We present several enhancements of existing snake algorithms for segmentation. For the detection of 3-D DNA filaments from their orthogonal projections, we introduce the concept of projection-steerable matched filtering. We then use a 3-D snake algorithm to reconstruct the shape.

Next, we analyze the efficiency of curve representations using refinable basis functions for the description of shape boundaries. We derive an exact expression for the error when we approximate a periodic signal in a scaling-function basis. Finally, we present a method for the exact computation of the area moments of such shapes.

@PHDTHESIS(http://bigwww.epfl.ch/publications/jacob0302.html,
AUTHOR="Jacob, M.",
TITLE="Parametric Shape Processing in Biomedical Imaging",
SCHOOL="{\'{E}}cole polytechnique f{\'{e}}d{\'{e}}rale de {L}ausanne
	({EPFL})",
YEAR="2003",
type="{EPFL} Thesis no.\ 2857 (2003), 192 p.",
address="",
month="September 30,",
note="")
© 2003 M. Jacob. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from M. Jacob. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved