Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Shape Estimation
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Shape Estimation of 3-D DNA Molecules from Stereo Cryo-Electron Micro-Graphs

M. Jacob, T. Blu, M. Unser

Proceedings of the 2004 Eleventh IEEE International Conference on Image Processing (ICIP'04), Singapore, Singapore, October 24-27, 2004, pp. 1883-1886.


We introduce a 3-D parametric active contour algorithm for the shape estimation of DNA molecules from stereo cryo-electron micrographs. We consider a 3-D filament (consisting of a B-spline skeleton and a specified radial profile) and match its projections with the micrographs using an optimization algorithm. To accelerate the evaluation of the projections, we approximate the global model locally by an elongated blob-like template that is designed to be projection-steerable. This means that the 2-D projections of the template at any 3-D orientation can be expressed as a linear combination of a few basis functions. Thus, the matching of the template projections is reduced to evaluating a weighted sum of the inner-products between the basis functions and the micrographs.

We choose an internal energy term that penalizes the total curvature magnitude of the curve. We also use a constraint energy term that forces the curve to have a specified length. The sum of these terms along with the image energy obtained from the matching process is minimized using a conjugate-gradient algorithm. We validate the algorithm using real as well as simulated data.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/jacob0403.html,
AUTHOR="Jacob, M. and Blu, T. and Unser, M.",
TITLE="Shape Estimation of \mbox{3-D} {DNA} Molecules from Stereo
	Cryo-Electron Micro-Graphs",
BOOKTITLE="Proceedings of the 2004 Eleventh {IEEE} International
	Conference on Image Processing ({ICIP'04})",
YEAR="2004",
editor="",
volume="",
series="",
pages="1883--1886",
address="Singapore, Singapore",
month="October 24-27,",
organization="",
publisher="",
note="")

© 2004 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved