Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Wavelet Shrinkage
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Wavelet Shrinkage with Consistent Cycle Spinning Generalizes Total Variation Denoising

U. Kamilov, E. Bostan, M. Unser

IEEE Signal Processing Letters, vol. 19, no. 4, pp. 187-190, April 2012.


We introduce a new wavelet-based method for the implementation of Total-Variation-type denoising. The data term is least-squares, while the regularization term is gradient-based. The particularity of our method is to exploit a link between the discrete gradient and wavelet shrinkage with cycle spinning, which we express by using redundant wavelets. The redundancy of the representation gives us the freedom to enforce additional constraints (e.g., normalization) on the solution to the denoising problem. We perform optimization in an augmented-Lagrangian framework, which decouples the difficult n-dimensional constrained-optimization problem into a sequence of n easier scalar unconstrained problems that we solve efficiently via traditional wavelet shrinkage. Our method can handle arbitrary gradient-based regularizers. In particular, it can be made to adhere to the popular principle of least total variation. It can also be used as a maximum a posteriori estimator for a variety of priors. We illustrate the performance of our method for image denoising and for the statistical estimation of sparse stochastic processes.

@ARTICLE(http://bigwww.epfl.ch/publications/kamilov1201.html,
AUTHOR="Kamilov, U. and Bostan, E. and Unser, M.",
TITLE="Wavelet Shrinkage with Consistent Cycle Spinning Generalizes
	Total Variation Denoising",
JOURNAL="{IEEE} Signal Processing Letters",
YEAR="2012",
volume="19",
number="4",
pages="187--190",
month="April",
note="")

© 2012 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved