Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Adaptive GAMP
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Autocalibrated Signal Reconstruction from Linear Measurements Using Adaptive GAMP

U.S. Kamilov, A. Bourquard, E. Bostan, M. Unser

Proceedings of the Thirty-Eighth IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'13), Vancouver BC, Canada, May 26-31, 2013, pp. 5925-5928.


In this paper, we reconstruct signals from underdetermined linear measurements where the componentwise gains of the measurement system are unknown a priori. The reconstruction is performed through an adaptation of the message-passing algorithm called adaptive GAMP that enables joint gain calibration and signal estimation. To evaluate our approach, we apply it to the problem of sparse recovery and compare it against an ℓ1-based approach. We numerically show that adaptive GAMP yields excellent results even for a moderate amount of data. It approaches the performance of oracle GAMP where the gains are perfectly known asymptotically.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/kamilov1301.html,
AUTHOR="Kamilov, U.S. and Bourquard, A. and Bostan, E. and Unser, M.",
TITLE="Autocalibrated Signal Reconstruction from Linear Measurements
	Using Adaptive {GAMP}",
BOOKTITLE="Proceedings of the Thirty-Eighth {IEEE} International
	Conference on Acoustics, Speech, and Signal Processing
	({ICASSP'13})",
YEAR="2013",
editor="",
volume="",
series="",
pages="5925--5928",
address="Vancouver BC, Canada",
month="May 26-31,",
organization="",
publisher="",
note="")

© 2013 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved