Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Wavelet-Like Bases
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

From Differential Equations to the Construction of New Wavelet-Like Bases

I. Khalidov, M. Unser

IEEE Transactions on Signal Processing, vol. 54, no. 4, pp. 1256-1267, April 2006.


In this paper, an approach is introduced based on differential operators to construct wavelet-like basis functions. Given a differential operator L with rational transfer function, elementary building blocks are obtained that are shifted replicates of the Green's function of L. It is shown that these can be used to specify a sequence of embedded spline spaces that admit a hierarchical exponential B-spline representation. The corresponding B-splines are entirely specified by their poles and zeros; they are compactly supported, have an explicit analytical form, and generate multiresolution Riesz bases. Moreover, they satisfy generalized refinement equations with a scale-dependent filter and lead to a representation that is dense in L2. This allows us to specify a corresponding family of semi-orthogonal exponential spline wavelets, which provides a major extension of earlier polynomial spline constructions. These wavelets are completely characterized, and it is proven that they satisfy the following remarkable properties: 1) they are orthogonal across scales and generate Riesz bases at each resolution level; 2) they yield unconditional bases of L2—either compactly supported (B-spline-type) or with exponential decay (orthogonal or dual-type); 3) they have N vanishing exponential moments, where N is the order of the differential operator; 4) they behave like multiresolution versions of the operator L from which they are derived; and 5) their order of approximation is (N − M), where N and M give the number of poles and zeros, respectively. Last but not least, the new wavelet-like decompositions are as computationally efficient as the classical ones. They are computed using an adapted version of Mallat's filterbank algorithm, where the filters depend on the decomposition level.

@ARTICLE(http://bigwww.epfl.ch/publications/khalidov0601.html,
AUTHOR="Khalidov, I. and Unser, M.",
TITLE="From Differential Equations to the Construction of New
	Wavelet-Like Bases",
JOURNAL="{IEEE} Transactions on Signal Processing",
YEAR="2006",
volume="54",
number="4",
pages="1256--1267",
month="April",
note="")

© 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved