Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Autoregressive Identification
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

On the Unique Identification of Continuous-Time Autoregressive Models from Sampled Data

H. Kirshner, M. Unser, J.P. Ward

IEEE Transactions on Signal Processing, vol. 62, no. 6, pp. 1361-1376, March 15, 2014.


In this work, we investigate the relationship between continuous-time autoregressive (AR) models and their sampled version. We consider uniform sampling and derive criteria for uniquely determining the continuous-time parameters from sampled data; the model order is assumed to be known. We achieve this by removing a set of measure zero from the collection of all AR models and by investigating the asymptotic behavior of the remaining set of autocorrelation functions. We provide necessary and sufficient conditions for uniqueness of general AR models, and we demonstrate the usefulness of this result by considering particular examples. We further exploit our theory and introduce an estimation algorithm that recovers continuous-time AR parameters from sampled data, regardless of the sampling interval. We demonstrate the usefulness of our algorithm for various Gaussian and non-Gaussian AR processes.

@ARTICLE(http://bigwww.epfl.ch/publications/kirshner1402.html,
AUTHOR="Kirshner, H. and Unser, M. and Ward, J.P.",
TITLE="On the Unique Identification of Continuous-Time Autoregressive
	Models from Sampled Data",
JOURNAL="{IEEE} Transactions on Signal Processing",
YEAR="2014",
volume="62",
number="6",
pages="1361--1376",
month="March 15,",
note="")

© 2014 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved