Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Image Denoising
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Image Denoising by Pointwise Thresholding of the Undecimated Wavelet Coefficients: A Global SURE Optimum

F. Luisier, T. Blu

Proceedings of the Thirty-Second IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'07), Honolulu HI, USA, April 15-20, 2007, pp. I-593-I-596.


We devise a new undecimated wavelet thresholding for denoising images corrupted by additive Gaussian white noise. The first key point of our approach is the use of a linearly parameterized pointwise thresholding function. The second key point consists in optimizing the parameters globally by minimizing Stein's unbiased MSE estimate (SURE) directly in the image-domain, and not separately in the wavelet subbands.

Amazingly, our method gives similar results to the best state-of-the-art algorithms, despite using only a simple pointwise thresholding function; we demonstrate it in simulations over a wide range of noise levels for a representative set of standard grayscale images.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/luisier0702.html,
AUTHOR="Luisier, F. and Blu, T.",
TITLE="Image Denoising by Pointwise Thresholding of the Undecimated
	Wavelet Coefficients: {A} Global {SURE} Optimum",
BOOKTITLE="Proceedings of the Thirty-Second {IEEE} International
	Conference on Acoustics, Speech, and Signal Processing
	({ICASSP'07})",
YEAR="2007",
editor="",
volume="",
series="",
pages="{I}-593--{I}-596",
address="Honolulu HI, USA",
month="April 15-20,",
organization="",
publisher="",
note="")

© 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved