Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  EPFL Thesis 2555
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Nondyadic and Nonlinear Multiresolution Image Approximations

A. Muñoz Barrutia

École polytechnique fédérale de Lausanne, EPFL Thesis no. 2555 (2002), 175 p., April 12, 2002.


This thesis focuses on the development of novel multiresolution image approximations.Specifically, we present two kinds of generalization of multiresolution techniques: image reduction for arbitrary scales, and nonlinear approximations using other metrics than the standard Euclidean one.

Traditional multiresolution decompositions are restricted to dyadic scales. As first contribution of this thesis, we develop a method that goes beyond this restriction and that is well suited to arbitrary scale-change computations. The key component is a new and numerically exact algorithm for computing inner products between a continuously defined signal and B-splines of any order and of arbitrary sizes. The technique can also be applied for non-uniform to uniform grid conversion, which is another approximation problem where our method excels. Main applications are resampling and signal reconstruction.

Although simple to implement, least-squares approximations lead to artifacts that could be reduced if nonlinear methods would be used instead. The second contribution of the thesis is the development of nonlinear spline pyramids that are optimal for lp-norms. First, we introduce a Banach-space formulation of the problem and show that the solution is well defined. Second, we compute the lp-approximation thanks to an iterative optimization algorithm based on digital filtering. We conclude that l1-approximations reduce the artifacts that are inherent to least-squares methods; in particular, edge blurring and ringing. In addition, we observe that the error of l1-approximations is sparser. Finally, we derive an exact formula for the asymptotic Lp-error; this result justifies using the least-squares approximation as initial solution for the iterative optimization algorithm when the degree of the spline is even; otherwise, one has to include an appropriate correction term.

The theoretical background of the thesis includes the modelisation of images in a continuous/discrete formalism and takes advantage of the approximation theory of linear shift-invariant operators. We have chosen B-splines as basis functions because of their nice properties. We also propose a new graphical formalism that links B-splines, finite differences,differential operators, and arbitrary scale changes.

@PHDTHESIS(http://bigwww.epfl.ch/publications/munoz0201.html,
AUTHOR="Mu{\~{n}}oz Barrutia, A.",
TITLE="Nondyadic and Nonlinear Multiresolution Image
	Approximations",
SCHOOL="{\'{E}}cole polytechnique f{\'{e}}d{\'{e}}rale de {L}ausanne
	({EPFL})",
YEAR="2002",
type="{EPFL} Thesis no.\ 2555 (2002), 175 p.",
address="",
month="April 12,",
note="")
© 2002 A. Muñoz Barrutia. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from A. Muñoz Barrutia. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved