Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.   Sparse Processes
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Optimality of Operator-Like Wavelets for Representing Sparse AR(1) Processes

P. Pad, M. Unser

IEEE Transactions on Signal Processing, vol. 63, no. 18, pp. 4827-4837, September 15, 2015.


The discrete cosine transform (DCT) is known to be asymptotically equivalent to the Karhunen-Loève transform (KLT) of Gaussian first-order auto-regressive (AR(1)) processes. Since being uncorrelated under the Gaussian hypothesis is synonymous with independence, it also yields an independent-component analysis (ICA) of such signals. In this paper, we present a constructive non-Gaussian generalization of this result: the characterization of the optimal orthogonal transform (ICA) for the family of symmetric-α-stable AR(1) processes. The degree of sparsity of these processes is controlled by the stability parameter 0 < α ≤ 2 with the only non-sparse member of the family being the classical Gaussian AR(1) process with α = 2. Specifically, we prove that, for α < 2, a fixed family of operator-like wavelet bases systematically outperforms the DCT in terms of compression and denoising ability. The effect is quantified with the help of two performance criteria (one based on the Kullback-Leibler divergence, and the other on Stein's formula for the minimum estimation error) that can also be viewed as statistical measures of independence. Finally, we observe that, for the sparser kind of processes with 0 < α ≤ 1, the operator-like wavelet basis, as dictated by linear system theory, is undistinguishable from the ICA solution obtained through numerical optimization. Our framework offers a unified view that encompasses sinusoidal transforms such as the DCT and a family of orthogonal Haar-like wavelets that is linked analytically to the underlying signal model.

@ARTICLE(http://bigwww.epfl.ch/publications/pad1501.html,
AUTHOR="Pad, P. and Unser, M.",
TITLE="Optimality of Operator-Like Wavelets for Representing Sparse
	{AR(1)} Processes",
JOURNAL="{IEEE} Transactions on Signal Processing",
YEAR="2015",
volume="63",
number="18",
pages="4827--4837",
month="September 15,",
note="")

© 2015 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved