Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Diffraction Tomography
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Versatile Reconstruction Framework for Diffraction Tomography with Intensity Measurements and Multiple Scattering

T.-a. Pham, E. Soubies, A. Goy, J. Lim, F. Soulez, D. Psaltis, M. Unser

Optics Express, vol. 26, no. 3, pp. 2749-2763, February 5, 2018.


Taking benefit from recent advances in both phase retrieval and estimation of refractive indices from holographic measurements, we propose a unified framework to reconstruct them from intensity-only measurements. Our method relies on a generic and versatile formulation of the inverse problem and includes sparsity constraints. Its modularity enables the use of a variety of forward models, from simple linear ones to more sophisticated nonlinear ones, as well as various regularizers. We present reconstructions that deploy either the beam-propagation method or the iterative Lippmann-Schwinger model, combined with total-variation regularization. They suggest that our proposed (intensity-only) method can reach the same performance as reconstructions from holographic (complex) data. This is of particular interest from a practical point of view because it allows one to simplify the acquisition setup.

@ARTICLE(http://bigwww.epfl.ch/publications/pham1801.html,
AUTHOR="Pham, T.-a. and Soubies, E. and Goy, A. and Lim, J. and Soulez,
	F. and Psaltis, D. and Unser, M.",
TITLE="Versatile Reconstruction Framework for Diffraction Tomography
	with Intensity Measurements and Multiple Scattering",
JOURNAL="Optics Express",
YEAR="2018",
volume="26",
number="3",
pages="2749--2763",
month="February 5,",
note="")

© 2018 OSA CC-BY. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from OSA CC-BY. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved