Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Nonideal Sampling
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Non-Ideal Sampling and Adapted Reconstruction Using the Stochastic Matérn Model

S. Ramani, D. Van De Ville, M. Unser

Best student paper award, Proceedings of the IEEE Thirty-First International Conference on Acoustics, Speech, and Signal Processing (ICASSP'06), Toulouse, French Republic, May 14-19, 2006, pp. II-73-II-76.


The Matérn class is a parametric family of autocorrelation functions that is commonly used in geostatistics. We argue that a generalized, anisotropic version of this model is suitable for capturing the correlation structure of a variety of natural images. We specify the optimal space for the MMSE reconstruction of stochastic Matérn signals from their uniformly-sampled noisy measurements (generalized sampling problem). We prove that the optimal reconstruction space is generated by the multi-integer shifts of a Matérn function which form a Riesz basis. Based on this representation, we propose a practical filter-based reconstruction method that relies on the prior identification of the Matérn parameters from the measured data. We present experimental results to justify the use of the Matérn model and to demonstrate the performance of our signal-adapted reconstruction technique.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/ramani0601.html,
AUTHOR="Ramani, S. and Van De Ville, D. and Unser, M.",
TITLE="Non-Ideal Sampling and Adapted Reconstruction Using the
	Stochastic {M}at{\'{e}}rn Model",
BOOKTITLE="Proceedings of the {IEEE} Thirty-First International
	Conference on Acoustics, Speech, and Signal Processing
	({ICASSP'06})",
YEAR="2006",
editor="",
volume="",
series="",
pages="{II}-73--{II}-76",
address="Toulouse, French Republic",
month="May 14-19,",
organization="",
publisher="",
note="Best student paper award")

© 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved