Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Bioimaging Benchmarks
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Benchmarking Image-Processing Algorithms for Biomicroscopy: Reference Datasets and Perspectives

D. Sage, H. Kirshner, C. Vonesch, S. Lefkimmiatis, M. Unser

Proceedings of the Twenty-First European Signal Processing Conference (EUSIPCO'13), Marrakech, Kingdom of Morocco, September 9-13, 2013, paper no. 1569744665.


As the field of bioimage informatics matures, the issue of the validation of image reconstruction algorithms and the definition of proper performance criteria becomes more pressing. In this work, we discuss benchmarking aspects of fluorescence microscopy quantitative tools. We point out the importance of generating realistic datasets and describe our approach to this task. We rely on our experience and present arguments in favor of the use of 3D continuous-domain models of biological structures for simulating bioimaging datasets. We also present physically-realistic models of image formation that that are reasonably efficiently to implement.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/sage1303.html,
AUTHOR="Sage, D. and Kirshner, H. and Vonesch, C. and Lefkimmiatis, S.
	and Unser, M.",
TITLE="Benchmarking Image-Processing Algorithms for Biomicroscopy:
	{R}eference Datasets and Perspectives",
BOOKTITLE="Proceedings of the Twenty-First European Signal Processing
	Conference ({EUSIPCO'13})",
YEAR="2013",
editor="",
volume="",
series="",
pages="",
address="Marrakech, Kingdom of Morocco",
month="September 9-13,",
organization="",
publisher="",
note="paper no.\ 1569744665")
© 2013 EUSIPCO. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from EUSIPCO. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved