Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Polychromatic Reconstruction
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Interbands Phase Models for Polychromatic Image Reconstruction in Optical Interferometry

A. Schutz, A. Ferrari, É. Thiébaut, F. Soulez, M. Vannier, D. Mary

Proceedings of the SPIE Astronomical Telescopes + Instrumentation Conference on Optical and Infrared Interferometry and Imaging V (SPIE-ATI'16), Edinburgh, United Kingdom, June 27-July 1, 2016, vol. 9907, pp. 99073K-1/99073K-9.


This paper presents an extension of the spatio-spectral ("3D") image reconstruction algorithm called PAINTER (Polychromatic opticAl INTErferometric Reconstruction software). The algorithm is able to solve large scale problems and relies on an iterative process, which alternates estimation of polychromatic images and of complex visibilities. The complex visibilities are not only estimated from squared moduli and closure phases, but also from differential phases, which helps to constrain the polychromatic reconstruction. Alternative methods to construct the specific differential phases used in PAINTER are proposed. Simulations on synthetic data illustrate the specificities of the proposed methods.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/schutz1601.html,
AUTHOR="Schutz, A. and Ferrari, A. and Thi{\'{e}}baut, {\'{E}}. and
	Soulez, F. and Vannier, M. and Mary, D.",
TITLE="Interbands Phase Models for Polychromatic Image Reconstruction in
	Optical Interferometry",
BOOKTITLE="Proceedings of the {SPIE} Astronomical Telescopes +
	Instrumentation Conference on Optical and Infrared Interferometry
	and Imaging {V} ({ATI'16})",
YEAR="2016",
editor="",
volume="9907",
series="",
pages="99073K-1--99073K-9",
address="Edinburgh, United Kingdom",
month="June 27-July 1,",
organization="",
publisher="",
note="")

© 2016 SPIE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from SPIE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved