Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Exact OCT
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Non-Iterative Exact Signal Recovery in Frequency Domain Optical Coherence Tomography

S.C. Sekhar, R.A. Leitgeb, M.L. Villiger, A.H. Bachmann, T. Blu, M. Unser

Proceedings of the Fourth IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI'07), Arlington VA, USA, April 12-15, 2007, pp. 808-811.


We address the problem of exact signal recovery in frequency domain optical coherence tomography (FDOCT) systems. Our technique relies on the fact that, in a spectral interferometry setup, the intensity of the total signal reflected from the object is smaller than that of the reference arm. We develop a novel algorithm to compute the reflected signal amplitude from the interferometric measurements. Our technique is non-iterative, non-linear and it leads to an exact solution in the absence of noise. The reconstructed signal is free from artifacts such as the autocorrelation noise that is normally encountered in the conventional inverse Fourier transform techniques. We present results on synthesized data where we have a benchmark for comparing the performance of the technique. We also report results on experimental FDOCT measurements of the retina of the human eye.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/sekhar0701.html,
AUTHOR="Sekhar, S.C. and Leitgeb, R.A. and Villiger, M.L. and Bachmann,
	A.H. and Blu, T. and Unser, M.",
TITLE="Non-Iterative Exact Signal Recovery in Frequency Domain Optical
	Coherence Tomography",
BOOKTITLE="Proceedings of the Fourth {IEEE} International Symposium on
	Biomedical Imaging: {F}rom Nano to Macro ({ISBI'07})",
YEAR="2007",
editor="",
volume="",
series="",
pages="808--811",
address="Arlington VA, USA",
month="April 12-15,",
organization="",
publisher="",
note="")

© 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved