Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Exact Relaxations
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Exact Continuous Relaxations for the ℓ0-Regularized Least-Squares Criteria

E. Soubies

SIAM Conference on Imaging Science (SIS'18), Bologna, Italian Republic, June 5-8, 2018, session MS37-2.


Several continuous non-convex relaxations of the ℓ0 pseudo-norm have been proposed over the past. In this talk, considering the ℓ0-regularized least-squares minimization problem (ℓ2-ℓ0), I will present theoretical results which allow to compare such relaxations from the perspective of their fidelity to the initial ℓ2-ℓ0 problem. I will exhibit necessary and sufficient conditions on separable penalties approximating the ℓ0 pseudo-norm which ensure that the associated regularized least-squares functional preserves the global minimizers of the initial one and do not add new local minimizers. From these conditions, we get a class of penalties said to be exact regarding to their properties concerning the relaxed functional.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/soubies1802.html,
AUTHOR="Soubies, E.",
TITLE="Exact Continuous Relaxations for the $\ell_{0}$-Regularized
	Least-Squares Criteria",
BOOKTITLE="{SIAM} Conference on Imaging Science ({SIS'18})",
YEAR="2018",
editor="",
volume="",
series="",
pages="",
address="Bologna, Italian Republic",
month="June 5-8,",
organization="",
publisher="",
note="session MS37-2")
© 2018 SIAM. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from SIAM. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved