Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Multiresolution Moments
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Multiresolution Moment Filters: Theory and Applications

M. Sühling, M. Arigovindan, P. Hunziker, M. Unser

IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 484-495, April 2004.


We introduce local weighted geometric moments that are computed from an image within a sliding window at multiple scales. When the window function satisfies a two-scale relation, we prove that lower order moments can be computed efficiently at dyadic scales by using a multiresolution wavelet-like algorithm. We show that B-splines are well-suited window functions because, in addition to being refinable, they are positive, symmetric, separable, and very nearly isotropic (Gaussian shape). We present three applications of these multiscale local moments. The first is a feature-extraction method for detecting and characterizing elongated structures in images. The second is a noise-reduction method which can be viewed as a multiscale extension of Savitzky-Golay filtering. The third is a multiscale optical-flow algorithm that uses a local affine model for the motion field, extending the Lucas-Kanade optical-flow method. The results obtained in all cases are promising.

@ARTICLE(http://bigwww.epfl.ch/publications/suehling0402.html,
AUTHOR="S{\"{u}}hling, M. and Arigovindan, M. and Hunziker, P. and
	Unser, M.",
TITLE="Multiresolution Moment Filters: {T}heory and Applications",
JOURNAL="{IEEE} Transactions on Image Processing",
YEAR="2004",
volume="13",
number="4",
pages="484--495",
month="April",
note="")

© 2004 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved