Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Random Vector Fields
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Self-Similar Random Vector Fields and Their Wavelet Analysis

P.D. Tafti, M. Unser

Proceedings of the SPIE Optics and Photonics 2009 Conference on Mathematical Methods: Wavelet XIII, San Diego CA, USA, August 2-6, 2009, vol. 7446, pp. 74460Y-1/74460Y-8.


This paper is concerned with the mathematical characterization and wavelet analysis of self-similar random vector fields. The study consists of two main parts: the construction of random vector models on the basis of their invariance under coordinate transformations, and a study of the consequences of conducting a wavelet analysis of such random models. In the latter part, after briefly examining the effects of standard wavelets on the proposed random fields, we go on to introduce a new family of Laplacian-like vector wavelets that in a way duplicate the covariant-structure and whitening relations governing our random models.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/tafti0902.html,
AUTHOR="Tafti, P.D. and Unser, M.",
TITLE="Self-Similar Random Vector Fields and Their Wavelet Analysis",
BOOKTITLE="Proceedings of the {SPIE} Conference on Mathematical Imaging:
	{W}avelet {XIII}",
YEAR="2009",
editor="",
volume="7446",
series="",
pages="74460Y-1--74460Y-8",
address="San Diego CA, USA",
month="August 2-6,",
organization="",
publisher="",
note="")

© 2009 SPIE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from SPIE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved