Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Image Denoising
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Benefits of Consistency in Image Denoising with Steerable Wavelets

B. Tekin, U.S. Kamilov, E. Bostan, M. Unser

Proceedings of the Thirty-Eighth IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'13), Vancouver BC, Canada, May 26-31, 2013, pp. 1355-1358.


The steerable wavelet transform is a redundant image representation with the remarkable property that its basis functions can be adaptively rotated to a desired orientation. This makes the transform well-suited to the design of wavelet-based algorithms applicable to images with a high amount of directional features. However, arbitrary modification of the wavelet-domain coefficients may violate consistency constraints because a legitimate representation must be redundant. In this paper, by honoring the redundancy of the coefficients, we demonstrate that it is possible to improve the performance of regularized least-squares problems in the steerable wavelet domain. We illustrate that our consistent method significantly improves upon the performance of conventional denoising with steerable wavelets.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/tekin1301.html,
AUTHOR="Tekin, B. and Kamilov, U.S. and Bostan, E. and Unser, M.",
TITLE="Benefits of Consistency in Image Denoising with Steerable
	Wavelets",
BOOKTITLE="Proceedings of the Thirty-Eighth {IEEE} International
	Conference on Acoustics, Speech, and Signal Processing
	({ICASSP'13})",
YEAR="2013",
editor="",
volume="",
series="",
pages="1355--1358",
address="Vancouver BC, Canada",
month="May 26-31,",
organization="",
publisher="",
note="")

© 2013 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved