Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Steer’n’Detect
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Steer’n’Detect: Fast 2D Template Detection with Accurate Orientation Estimation

V. Uhlmann, Z. Püspöki, A. Depeursinge, M. Unser, D. Sage, J. Fageot

Bioinformatics, vol. 38, no. 11, pp. 3146-3148, June 1, 2022.


Motivation: Rotated template matching is an efficient and versatile algorithm to analyze microscopy images, as it automates the detection of stereotypical structures, such as organelles that can appear at any orientation. Its performance however quickly degrades in noisy image data.

Results: We introduce Steer’n’Detect, an ImageJ plugin implementing a recently published algorithm to detect patterns of interest at any orientation with high accuracy from a single template in 2D images. Steer’n’Detect provides a faster and more robust substitute to template matching. By adapting to the statistics of the image background, it guarantees accurate results even in the presence of noise. The plugin comes with an intuitive user interface facilitating results analysis and further post-processing.

Availability and implementation: https://github.com/Biomedical-Imaging-Group/Steer-n-Detect/

Contact: uhlmann@ebi.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

@ARTICLE(http://bigwww.epfl.ch/publications/uhlmann2202.html,
AUTHOR="Uhlmann, V. and P{\"{u}}sp{\"{o}}ki, Z. and Depeursinge, A. and
	Unser, M. and Sage, D. and Fageot, J.",
TITLE="Steer'n'Detect: Fast 2D Template Detection with Accurate
	Orientation Estimation",
JOURNAL="Bioinformatics",
YEAR="2022",
volume="38",
number="11",
pages="3146--3148",
month="June 1,",
note="")

© 2022 The Authors. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from The Authors. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved