Biomedical Imaging GroupSTI
English only   BIG > Publications > Wavelets and RBFs

 Home Page
 News & Events
 Tutorials and Reviews
 Download Algorithms

 All BibTeX References

Wavelets and Radial Basis Functions: A Unifying Perspective

M. Unser, T. Blu

Proceedings of the SPIE Conference on Mathematical Imaging: Wavelet Applications in Signal and Image Processing VIII, San Diego CA, USA, July 31-August 4, 2000, vol. 4119, pp. 487-493.

Wavelets and radial basis functions (RBF) are two rather distinct ways of representing signals in terms of shifted basis functions. An essential aspect of RBF, which makes the method applicable to non-uniform grids, is that the basis functions, unlike wavelets, are non-local—in addition, they do not involve any scaling at all. Despite these fundamental differences, we show that the two types of representation are closely connected. We use the linear splines as motivating example. These can be constructed by using translates of the one-side ramp function (which is not localized), or, more conventionally, by using the shifts of a linear B-spline. This latter function, which is the prototypical example of a scaling function, can be obtained by localizing the one-side ramp function using finite differences. We then generalize the concept and identify the whole class of self-similar radial basis functions that can be localized to yield conventional multiresolution wavelet bases. Conversely, we prove that, for any compactly supported scaling function φ(x), there exists a one-sided central basis function ρ+(x) that spans the same multiresolution subspaces. The central property is that the multiresolution bases are generated by simple translation of ρ+, without any dilation.

AUTHOR="Unser, M. and Blu, T.",
TITLE="Wavelets and Radial Basis Functions: {A} Unifying
BOOKTITLE="Proceedings of the {SPIE} Conference on Mathematical
        Imaging: {W}avelet Applications in Signal and Image Processing
address="San Diego CA, USA",
month="July 31-August 4,",

© 2000 SPIE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from SPIE.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.