Biomedical Imaging GroupSTI
English only   BIG > Publications > Wavelet Theory Demystified

 Home Page
 News & Events
 Tutorials and Reviews
 Download Algorithms

 All BibTeX References

Wavelet Theory Demystified

M. Unser, T. Blu

IEEE Transactions on Signal Processing, vol. 51, no. 2, pp. 470-483, February 2003.

In this paper, we revisit wavelet theory starting from the representation of a scaling function as the convolution of a B-spline (the regular part of it) and a distribution (the irregular or residual part). This formulation leads to some new insights on wavelets and makes it possible to rederive the main results of the classical theory—including some new extensions for fractional orders—in a self-contained, accessible fashion. In particular, we prove that the B-spline component is entirely responsible for five key wavelet properties: order of approximation, reproduction of polynomials, vanishing moments, multiscale differentiation property, and smoothness (regularity) of the basis functions. We also investigate the interaction of wavelets with differential operators giving explicit time domain formulas for the fractional derivatives of the basis functions. This allows us to specify a corresponding dual wavelet basis and helps us understand why the wavelet transform provides a stable characterization of the derivatives of a signal. Additional results include a new peeling theory of smoothness, leading to the extended notion of wavelet differentiability in the Lp-sense and a sharper theorem stating that smoothness implies order.

AUTHOR="Unser, M. and Blu, T.",
TITLE="Wavelet Theory Demystified",
JOURNAL="{IEEE} Transactions on Signal Processing",

© 2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.