Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Monogenic Wavelets
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

The Monogenic Riesz-Laplace Wavelet Transform

M. Unser, K. Balać, D. Van De Ville

Proceedings of the Sixteenth European Signal Processing Conference (EUSIPCO'08), Lausanne VD, Swiss Confederation, August 25-29, 2008.


We introduce a family of real and complex wavelet bases of L2(ℝ2) that are directly linked to the Laplace and Riesz operators. The crucial point is that the family is closed with respect to the Riesz transform which maps a real basis into a complex one. We propose to use such a Riesz pair of wavelet transforms to specify a multiresolution monogenic signal analysis. This yields a representation where each wavelet index is associated with a local orientation, an amplitude and a phase. We derive a corresponding wavelet-domain method for estimating the underlying instantaneous frequency of the signal. We also provide a simple mechanism for improving the shift and rotation-invariance of the wavelet decomposition. We conclude the paper by presenting a concrete analysis example.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/unser0811.html,
AUTHOR="Unser, M. and Bala{\'{c}}, K. and Van De Ville, D.",
TITLE="The Monogenic {R}iesz-{L}aplace Wavelet Transform",
BOOKTITLE="Proceedings of the Sixteenth European Signal Processing
		Conference ({EUSIPCO'08})",
YEAR="2008",
editor="",
volume="",
series="",
pages="",
address="Lausanne VD, Swiss Confederation",
month="August 25-29,",
organization="",
publisher="",
note="")
© 2008 EURASIP. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from EURASIP. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved