Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Stochastic Models
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Stochastic Models for Sparse and Piecewise-Smooth Signals

M. Unser, P.D. Tafti

IEEE Transactions on Signal Processing, vol. 59, no. 3, pp. 989-1006, March 2011.


We introduce an extended family of continuous-domain stochastic models for sparse, piecewise-smooth signals. These are specified as solutions of stochastic differential equations, or, equivalently, in terms of a suitable innovation model; the latter is analogous conceptually to the classical interpretation of a Gaussian stationary process as filtered white noise. The two specific features of our approach are 1) signal generation is driven by a random stream of Dirac impulses (Poisson noise) instead of Gaussian white noise, and 2) the class of admissible whitening operators is considerably larger than what is allowed in the conventional theory of stationary processes. We provide a complete characterization of these finite-rate-of-innovation signals within Gelfand's framework of generalized stochastic processes. We then focus on the class of scale-invariant whitening operators which correspond to unstable systems. We show that these can be solved by introducing proper boundary conditions, which leads to the specification of random, spline-type signals that are piecewise-smooth. These processes are the Poisson counterpart of fractional Brownian motion; they are nonstationary and have the same 1∕ω-type spectral signature. We prove that the generalized Poisson processes have a sparse representation in a wavelet-like basis subject to some mild matching condition. We also present a limit example of sparse process that yields a MAP signal estimator that is equivalent to the popular TV-denoising algorithm.

@ARTICLE(http://bigwww.epfl.ch/publications/unser1102.html,
AUTHOR="Unser, M. and Tafti, P.D.",
TITLE="Stochastic Models for Sparse and Piecewise-Smooth Signals",
JOURNAL="{IEEE} Transactions on Signal Processing",
YEAR="2011",
volume="59",
number="3",
pages="989--1006",
month="March",
note="")

© 2011 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved