Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Sparse Modeling
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Sparse Modeling and the Resolution of Inverse Problems in Bimedical Imaging

M. Unser

Invited lecture, 2015 HIT International Summer School on Pure and Applied Mathematics (ISSPAM'15), Harbin, People's Republic of China, July 6-August 9, 2015.


Sparse stochastic processes are continuous-domain processes that admit a parsimonious representation in some matched wavelet-like basis. Such models are relevant for image compression, compressed sensing, and, more generally, for the derivation of statistical algorithms for solving ill-posed inverse problems.

This course is devoted to the study of the broad family of sparse processes that are specified by a generic (non-Gaussian) innovation model or, equivalently, as solutions of linear stochastic differential equations driven by white Lévy noise. It presents the mathematical tools for their characterization. The two leading threads that underly the exposition are

  • the statistical property of infinite divisibility, which induces two distinct types of behavior Gaussian vs. sparse at the exclusion of any other;
  • the structural link between linear stochastic processes and spline functions which is exploited to simplify the mathematics.

The concepts are illustrated with the derivation of algorithms for the recovery of sparse signals, with applications to biomedical image reconstruction. In particular, this leads to a Bayesian reinterpretation of popular sparsity-promoting processing schemes such as total-variation denoising, LASSO, and wavelet shrinkage—as MAP estimators for specific types of sparse processes. The formulation also suggests alternative recovery procedures that minimize the estimation error.

The course is targeted to an audience of graduate students and researchers with an interest in signal/image processing, compressed sensing, approximation theory, machine learning, or statistics.For more details, including table of content, see http://www.sparseprocesses.org/.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/unser1504.html,
AUTHOR="Unser, M.",
TITLE="Sparse Modeling and the Resolution of Inverse Problems in
	Bimedical Imaging",
BOOKTITLE="2015 {HIT} International Summer School on Pure and Applied
	Mathematics ({ISSPAM'15})",
YEAR="2015",
editor="",
volume="",
series="",
pages="",
address="Harbin, People's Republic of China",
month="July 6-August 9,",
organization="",
publisher="",
note="Invited lecture")
© 2015 HIT. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from HIT. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved