Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Representer Theorems
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Representer Theorems for the Design of Deep Neural Networks and the Resolution of Continuous-Domain Inverse Problems

M. Unser

Keynote address, First International Workshop on Machine Learning for Medical Image Reconstruction (MLMIR'18), Granada, Kingdom of Spain, September 16, 2018.


Our purpose in this talk is to reenforce the (deep) connection between splines and learning techniques. To that end, we first describe a recent representer theorem that states that the extremal points of a broad class of linear inverse problems with generalized total-variation regularization are adaptive splines whose type is linked to the underlying regularization operator L. For instance, when L is n-th derivative (resp., Laplacian) operator, the optimal reconstruction is a non-uniform polynomial (resp., polyharmonic) spline with the smallest possible number of adaptive knots. The crucial observation is that such continuous-domain solutions are intrinsically sparse, and hence compatible with the kind of formulation (and algorithms) used in compressed sensing. We then make the link with current learning techniques by applying the theorem to optimize the shape of individual activations in a deep neural network. By selecting the regularization functional to be the 2nd-order total variation, we obtain an #optimal# deep-spline network whose activations are piece-linear splines with a few adaptive knots. Since each spline knot can be encoded with a ReLU unit, this provides a variational justification of the popular ReLU architecture. It also suggests some new computational challenges for the determination of the optimal activations involving linear combinations of ReLUs.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/unser1801.html,
AUTHOR="Unser, M.",
TITLE="Representer Theorems for the Design of Deep Neural Networks and
	the Resolution of Continuous-Domain Inverse Problems",
BOOKTITLE="First International Workshop on Machine Learning for Medical
	Image Reconstruction ({MLMIR'18})",
YEAR="2018",
editor="",
volume="",
series="",
pages="",
address="Granada, Kingdom of Spain",
month="September 16,",
organization="",
publisher="",
note="Keynote address")
© 2018 Springer. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from Springer. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved