Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Spline Pyramids
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

The L2-Polynomial Spline Pyramid

M. Unser, A. Aldroubi, M. Eden

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, no. 4, pp. 364-379, April 1993.


The authors are concerned with the derivation of general methods for the L2 approximation of signals by polynomial splines. The main result is that the expansion coefficients of the approximation are obtained by linear filtering and sampling.

The authors apply those results to construct a L2 polynomial spline pyramid that is a parametric multiresolution representation of a signal. This hierarchical data structure is generated by repeated application of a REDUCE function (prefilter and down-sampler). A complementary EXPAND function (up-sampler and post-filter) allows a finer resolution mapping of any coarser level of the pyramid. Four equivalent representations of this pyramid are considered, and the corresponding REDUCE and EXPAND filters are determined explicitly for polynomial splines of any order n (odd). Some image processing examples are presented. It is demonstrated that the performance of the Laplacian pyramid can be improved significantly by using a modified EXPAND function associated with the dual representation of a cubic spline pyramid.

Erratum

  • Equation (2.9), upper bound of the sum: (n+1)⁄2 should be replaced by ⌊n⁄2⌋.

@ARTICLE(http://bigwww.epfl.ch/publications/unser9305.html,
AUTHOR="Unser, M. and Aldroubi, A. and Eden, M.",
TITLE="The {$L_{2}$}-Polynomial Spline Pyramid",
JOURNAL="{IEEE} Transactions on Pattern Analysis and Machine
	Intelligence",
YEAR="1993",
volume="15",
number="4",
pages="364--379",
month="April",
note="")

© 1993 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved