Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  High-Quality Rotation
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Convolution-Based Interpolation for Fast, High-Quality Rotation of Images

M. Unser, P. Thévenaz, L.P. Yaroslavsky

IEEE Transactions on Image Processing, vol. 4, no. 10, pp. 1371-1381, October 1995.


This paper focuses on the design of fast algorithms for rotating images and preserving high quality. The basis for the approach is a decomposition of a rotation into a sequence of one-dimensional translations. As the accuracy of these operations is critical, we introduce a general theoretical framework that addresses their design and performance. We also investigate the issue of optimality and present an improved least-square formulation of the problem. This approach leads to a separable three-pass implementation of a rotation using one-dimensional convolutions only. We provide explicit filter formulas for several continuous signal models including spline and bandlimited representations. Finally, we present rotation experiments and compare the currently standard techniques with the various versions of our algorithm. Our results indicate that the present algorithm in its higher-order versions outperforms all standard high-accuracy methods of which we are aware, both in terms of speed and quality. Its computational complexity increases linearly with the order of accuracy. The best-quality results are obtained with the sine-based algorithm, which can be implemented using simple one-dimensional FFT's.

@ARTICLE(http://bigwww.epfl.ch/publications/unser9502.html,
AUTHOR="Unser, M. and Th{\'{e}}venaz, P. and Yaroslavsky, L.P.",
TITLE="Convolution-Based Interpolation for Fast, High-Quality
	Rotation of Images",
JOURNAL="{IEEE} Transactions on Image Processing",
YEAR="1995",
volume="4",
number="10",
pages="1371--1381",
month="October",
note="")

© 1995 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved