Biomedical Imaging GroupSTI
English only   BIG > Publications > Finite Innovation Rate

 Home Page
 News & Events
 Tutorials and Reviews
 Download Algorithms

 All BibTeX References

Sampling Signals with Finite Rate of Innovation

M. Vetterli, P. Marziliano, T. Blu

IEEE Transactions on Signal Processing, vol. 50, no. 6, pp. 1417-1428, June 2002.

Consider classes of signals that have a finite number of degrees of freedom per unit of time and call this number the rate of innovation. Examples of signals with a finite rate of innovation include streams of Diracs (e.g., the Poisson process), nonuniform splines, and piecewise polynomials.

Even though these signals are not bandlimited, we showthat they can be sampled uniformly at (or above) the rate of innovation using an appropriate kernel and then be perfectly reconstructed. Thus, we prove sampling theorems for classes of signals and kernels that generalize the classic "bandlimited and sinc kernel" case. In particular, we show how to sample and reconstruct periodic and finite-length streams of Diracs, nonuniform splines, and piecewise polynomials using sinc and Gaussian kernels. For infinite-length signals with finite local rate of innovation, we show local sampling and reconstruction based on spline kernels.

The key in all constructions is to identify the innovative part of a signal (e.g., time instants and weights of Diracs) using an annihilating or locator filter: a device well known in spectral analysis and error-correction coding. This leads to standard computational procedures for solving the sampling problem, which we show through experimental results.

Applications of these new sampling results can be found in signal processing, communications systems, and biological systems.

IEEE Signal Processing Society's 2006 Best Paper Award

AUTHOR="Vetterli, M. and Marziliano, P. and Blu, T.",
TITLE="Sampling Signals with Finite Rate of Innovation",
JOURNAL="{IEEE} Transactions on Signal Processing",
note="{IEEE Signal Processing Society's 2006 best paper award}")

© 2002 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.