Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Annihilating Filter
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Compressive Sampling Using Annihilating Filter-Based Low-Rank Interpolation

J.C. Ye, J.M. Kim, K.H. Jin, K. Lee

IEEE Transactions on Information Theory, vol. 63, no. 2, pp. 777-801, February 2017.


While the recent theory of compressed sensing provides an opportunity to overcome the Nyquist limit in recovering sparse signals, a solution approach usually takes the form of an inverse problem of an unknown signal, which is crucially dependent on specific signal representation. In this paper, we propose a drastically different two-step Fourier compressive sampling framework in a continuous domain that can be implemented via measurement domain interpolation, after which signal reconstruction can be done using classical analytic reconstruction methods. The main idea originates from the fundamental duality between the sparsity in the primary space and the low-rankness of a structured matrix in the spectral domain, showing that a low-rank interpolator in the spectral domain can enjoy all of the benefits of sparse recovery with performance guarantees. Most notably, the proposed low-rank interpolation approach can be regarded as a generalization of recent spectral compressed sensing to recover large classes of finite rate of innovations (FRI) signals at a near-optimal sampling rate. Moreover, for the case of cardinal representation, we can show that the proposed low-rank interpolation scheme will benefit from inherent regularization and an optimal incoherence parameter. Using a powerful dual certificate and the golfing scheme, we show that the new framework still achieves a near-optimal sampling rate for a general class of FRI signal recovery, while the sampling rate can be further reduced for a class of cardinal splines. Numerical results using various types of FRI signals confirm that the proposed low-rank interpolation approach offers significantly better phase transitions than conventional compressive sampling approaches.

@ARTICLE(http://bigwww.epfl.ch/publications/ye1701.html,
AUTHOR="Ye, J.C. and Kim, J.M. and Jin, K.H. and Lee, K.",
TITLE="Compressive Sampling Using Annihilating Filter-Based Low-Rank
	Interpolation",
JOURNAL="{IEEE} Transactions on Information Theory",
YEAR="2017",
volume="63",
number="2",
pages="777--801",
month="January",
note="")

© 2017 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved