Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Wavelet-Regularized MRI Reconstruction
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Wavelet-Regularized MRI Reconstruction

Medical Imaging
Mathematical Imaging
Wavelets

Principal Investigators: Matthieu Guerquin-Kern, Ulugbek Kamilov


Summary

We develop fast algorithms with wavelet regularization for general acquisition schemes in Magnetic Resonance Imaging. We also develop tools for the validation of MRI reconstruction methods.

Introduction

Classical MRI uses Cartesian sampling in k -space which facilitates the reconstruction process (simple inverse Fourier transform). Currently, the research focus is on more-general acquisition schemes ( e.g. , non-Cartesian, or with missing data) that offer more flexibility, but require more-complicated reconstruction procedures. The state-of-the-art algorithms are linear, but there is evidence that the quality of reconstruction can be improved by using nonlinear iterative techniques.

Main Contribution

To have a better-conditioned reconstruction problem, we propose to favor solutions that have a sparse representation in the wavelet domain (which is the case for natural-looking images). Our mathematical efforts will focus on the design of an algorithm with fast convergence that exploits the specificity of the problem settings. As a first step, we design an algorithm adapted to the single-coil case that can handle general non-Cartesian k -space sampling. Next, we extend it to the multiple-coil problem. We validate the reconstruction process on to both simulated and real data. We obtain equal or superior results in quality and speed with respect to the current state-of-the-art techniques.


Collaborations: Michael Unser, K.P. Prüssmann (ETHZ)

Period: 2008-2011

Funding: NCCBI

Major Publications

  • , , , , A Fast Wavelet-Based Reconstruction Method for Magnetic Resonance Imaging, IEEE Transactions on Medical Imaging, vol. 30, no. 9, pp. 1649–1660, September 2011.
  • , , , Efficient Image Reconstruction Under Sparsity Constraints with Application to MRI and Bioluminescence Tomography, Proceedings of the Thirty-Sixth IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'11), Prague, Czech Republic, May 22-27, 2011, pp. 5760–5763.
  • , , , , , Analytical Form of Shepp-Logan Phantom for Parallel MRI, Proceedings of the Seventh IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI'10), Rotterdam, Kingdom of the Netherlands, April 14-17, 2010, pp. 261–264.
  • Laboratory
  • Research
  • Publications
  • Code
  • Teaching
    • Courses
    • Student projects
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2025 EPFL, all rights reserved