Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Student Projects
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Students Projects

Proposals  On-Going  Completed  

3D Steerable Filter Learning for Efficient Volumetric Image Analysis

Autumn 2017
Master Diploma
Project: 00348

00348
The use of deep convolutional neural networks (CNN) for object recognition in computer vision has shown to provide excellent results in many applications. Deep CNNs learn multiple filters in each convolutional layer of a deep neural network architecture using backpropagation weight updates. A major drawback of the latter is the requirement of large amounts of training data and computational time to learn all pixel weights (i.e., free parameters) of the filters. Moreover, CNNs are not rotation-invariant and require extensive re-training with augmented data (e.g., rotated versions of the training images), which degrades the specificity of the learned filters. Steerable filters are used on image analysis as efficient and accurate rotation-invariant object detectors. They are excellent candidates to overcome these drawbacks. The 2D theory has been recently adapted to classification problems and applied to texture analysis. The goal of this project is to extend the framework to the 3D setting, where rotation-invariance is even more important. This presents both mathematical and implementation challenges.
  • Supervisors
  • Adrien Depeursinge, adrien.depeursinge@epfl.ch, 021 693 5115, BM 4141
  • Michael Unser, michael.unser@epfl.ch, 021 693 51 75, BM 4.136
  • Julien Fageot, julien.fageot@epfl.ch, BM 4.139, Tel: 021 693 3701
  • Laboratory
  • Research
  • Publications
  • Code
  • Teaching
    • Courses
    • Student projects
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved