Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Student Projects
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Students Projects

Proposals  On-Going  Completed  

Benchmarking of numerical methods for solving inverse problems

Spring 2019
Master Semester Project
Project: 00375

00375
Inverse problems are at the heart of many microscopy and medical imaging modalities where one aims at recovering an unknown object from given measurements. Such a problem is generally addressed through the minimization of a given functional composed of a data-fidelity term plus a regularization term. Within the Biomedical Imaging Group, we are currently developing a Matlab library (http://bigwww.epfl.ch/algorithms/globalbioim/) unifying the resolution of inverse problems. This library is based on several blocks (forward models, data-fidelity terms, regularizers, algorithms) that can be combined to solve any inverse problem. Given an imaging modality, one can thus easily compare methods that use different data terms, regularizers or algorithms. The goal of this project is to develop a Matlab code which, for a given modality, outputs in an elegant way different metrics showing the performances obtained using all the combinations of blocks (forward models, data-fidelity terms, regularizers, algorithms) that are available within the Library.
  • Supervisors
  • Pakshal Bohra, pakshal.bohra@epfl.ch, BM 4.140
  • Michael Unser, michael.unser@epfl.ch, 021 693 51 75, BM 4.136
  • Emmanuel Soubies
  • Laboratory
  • Research
  • Publications
  • Code
  • Teaching
    • Courses
    • Student projects
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved