Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Student Projects
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Students Projects

Proposals  On-Going  Completed  

Image reconstruction for optical diffraction tomography

Spring 2020
Master Semester Project
Project: 00392

00392
Optical diffraction tomography (ODT) allows one to quantitatively measure the distribution of the refractive index (RI) of the sample [1]. It proceeds by measuring the complex fields that are produced when the sample is illuminated with plane waves from different angles. This allows for the deployment of numerical methods to recover the RI. In this work, we are interested in the limited-angle regime where only some angles are available, which makes the problem ill-posed. To overcome it, it is common to add prior knowledge (i.e., regularization) to the sample during the reconstruction such as non-negativity constraint. The project aims at implementing and evaluating a new regularization for ODT. The code will be done on Matlab within the GlobalBioIm library [2]. Good skill in Matlab is required. Please contact us for further details.

Reference
[1] Soubies, E., Pham, T. A., & Unser, M. (2017). Efficient inversion of multiple-scattering model for optical diffraction tomography. Optics express, 25(18), 21786-21800.
[2] Soubies, E., Soulez, F., Mccann, M. T., Pham, T. A., Donati, L., Debarre, T., ... & Unser, M. (2019). Pocket guide to solve inverse problems with globalbioim. Inverse Problems, 35(10), 104006.
  • Supervisors
  • Thanh-An Pham, thanh-an.pham@epfl.ch, BM 4.140
  • Michael Unser, michael.unser@epfl.ch, 021 693 51 75, BM 4.136
  • Laboratory
  • Research
  • Publications
  • Code
  • Teaching
    • Courses
    • Student projects
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved