Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Student Projects
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Students Projects

Proposals  On-Going  Completed  

Sparse-View Computed Tomography Reconstruction using Generative Adversarial Networks

Autumn 2020
Master Diploma
Project: 00396

00396
In computed tomography (CT), the goal is to reconstruct a 3D object from a set of its 2D projections. Typically, this reconstruction task is formulated as an optimization problem where one exploits certain properties of the signal of interest (e.g., sparsity in a transform domain). However, over the past decade, several learning-based methods have been shown to outperform the classical reconstruction methods. In this project, we consider a setting where relatively fewer projections are available and the idea is to use generative adversarial networks (GANs) for the reconstruction task. The student should be familiar with the PyTorch framework and should have a general understanding about basic deep learning concepts. Prior experience in inverse problems and/or optimization is a definite plus.

References: [1] H. Gupta, K.H. Jin, H.Q. Nguyen, M.T. McCann, M. Unser, "CNN-Based Projected Gradient Descent for Consistent CT Image Reconstruction" [2] A. Bora, A. Jalal, E. Price, A. G. Dimakis, "Compressed sensing using generative models"
  • Supervisors
  • Pakshal Bohra, pakshal.bohra@epfl.ch, BM 4.140
  • Michael Unser, michael.unser@epfl.ch, 021 693 51 75, BM 4.136
  • Laboratory
  • Research
  • Publications
  • Code
  • Teaching
    • Courses
    • Student projects
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved