Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Student Projects
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Students Projects

Proposals  On-Going  Completed  

Deep learning for 3D particle field imaging

Spring 2021
Master Semester Project
Project: 00409

00409
Particle fields include a large range of samples of interest, such as bubbles, droplets, or biological cells. To obtain a three-dimensional (3D) volume of such fields, one popular method involves in-line digital holography (DH). In this imaging modality, the particle field is illuminated with an incident field (light) so that multiple scattering and diffraction occur. The resulting field is then holographically recorded. From a single two-dimensional (2D) DH image, computational methods are able to recover the particles within a 3D volume. When the density of particles and/or the depth of field are large, the reconstruction task becomes too difficult for conventional methods.
During this project, the student will implement and train a neural network to recover particles within a 3D volume from a 2D image. The programming language is Python (Pytorch). Based on an existing code in Matlab, the student will also implement the physical model which describes the wave propagation in Pytorch. The required skills are prior knowledge of deep learning, proficiency in coding in Pytorch. The student should be able to learn the basics of wave propagation and optics during the project.
During this project, the student will understand the physical model of an imaging modality, learn how to conduct a complete project with deep learning, and learn how to use a physical model combined with deep learning.
References Tahir, W., Kamilov, U. S., & Tian, L. (2019). Holographic particle localization under multiple scattering. Advanced Photonics, 1(3), 036003.
  • Supervisors
  • Thanh-An Pham, thanh-an.pham@epfl.ch, BM 4.140
  • Michael Unser, michael.unser@epfl.ch, 021 693 51 75, BM 4.136
  • Laboratory
  • Research
  • Publications
  • Code
  • Teaching
    • Courses
    • Student projects
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved