Wavelet Transforms with a Rational Dilation Factor
Ilker Bayram, Electrical and Computer Engineering Department Polytechnic Institute of NYU Brooklyn, New York (now with BIG)
Ilker Bayram, Electrical and Computer Engineering Department Polytechnic Institute of NYU Brooklyn, New York (now with BIG)
Seminar • 22 June 2009 • BM 1.111
AbstractThe dyadic wavelet transform is an effective tool for processing piecewise smooth signals; however, its poor frequency resolution (its low Q-factor) limits its effectiveness for processing oscillatory signals like speech, music, EEG, and vibration measurements, etc. In this talk, I will describe a more flexible family of discrete-time wavelet transforms (i.e. iterated filter banks) for which the frequency resolution can be varied. The new wavelet transform can attain higher Q-factors (desirable for processing oscillatory signals) or the same low Q-factor of the dyadic wavelet transform. The new wavelet transform is modestly overcomplete and based on rational dilations. Like the dyadic wavelet transform, it is an easily invertible 'constant-Q' discrete transform implemented using iterated filter banks and can likewise be associated with a wavelet frame for L2(R). I will also briefly talk (as time permits) about the problems I have worked on in the past, involving (i) a 'packet' extension of the dual-tree complex wavelet transform, (ii) stability of (the frame bounds of) iterated filter banks and (iii) analysis prior (relevant for wavelet, TV, etc.) regularized inverse problems.