Optical Diffraction Tomography with Single-Molecule Localization Microscopy
Thanh-An Pham
Thanh-An Pham
Meeting • 08 February 2021
AbstractSingle-molecule localization microscopy~(SMLM) is a fluorescence microscopy technique that achieves super-resolution imaging by sequentially activating and localizing random sparse subsets of fluorophores. Each activated fluorophore emits light that then scatters through the sample, thus acting as a source of illumination from inside the sample. Hence, the sequence of SMLM frames carries information on the distribution of the refractive index of the sample. In the first part, we explore the possibility of exploiting this information to recover the refractive index of the imaged sample, given the localized molecules. Our results with simulated data suggest that it is possible to exploit the phase information that underlies the SMLM data. In the second part, we refine the positions and the intensity of the fluorophore as well. Consequently, our joint-optimisation scheme improves the recovery of the refractive index and the SMLM localization.