Fast Haar-Wavelet Denoising of Multidimensional Fluorescence Microscopy Data
F. Luisier, C. Vonesch, T. Blu, M. Unser
Proceedings of the Sixth IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI'09), Boston MA, USA, June 28-July 1, 2009, in press.
Please do not bookmark the In Press papers as content and presentation may differ from the published version.
In a few seconds, you should be redirected to the published version. The preprint version is still available here
We propose a novel denoising algorithm to reduce the Poisson noise that is typically dominant in fluorescence microscopy data. To process large datasets at a low computational cost, we use the unnormalized Haar wavelet transform. Thanks to some of its appealing properties, independent unbiased MSE estimates can be derived for each subband. Based on these Poisson unbiased MSE estimates, we then optimize linearly parametrized interscale thresholding. Correlations between adjacent images of the multidimensional data are accounted for through a sliding window approach. Experiments on simulated and real data show that the proposed solution is qualitatively similar to a state-of-the-art multiscale method, while being orders of magnitude faster.